Effective bone engineering with periosteum-derived cells.
نویسندگان
چکیده
Bone augmentation via tissue engineering has generated significant interest. We hypothesized that periosteum-derived cells could be used in place of bone marrow stromal cells (which are widely used) in bone engineering, but the differences in osteogenic potential between these 2 cell types are unclear. Here, we compared the osteogenic potential of these cells, and investigated the optimal osteoinductive conditions for periosteum-derived cells. Both cell types were induced, via bFGF and BMP-2, to differentiate into osteoblasts. Periosteal cells proliferated faster than marrow stromal cells, and osteogenic markers indicated that bone marrow stromal cells were more osteogenic than periosteal cells. However, pre-treatment with bFGF made periosteal cells more sensitive to BMP-2 and more osteogenic. Transplants of periosteal cells treated with BMP-2 after pre-treatment with bFGF formed more new bone than did marrow stromal cells. Analysis of these data suggests that combined treatment with bFGF and BMP-2 can make periosteum a highly useful source of bone regeneration.
منابع مشابه
Probable Limitations of Osteoblasts Isolation from the Periosteum and Alveolar Bone in a Dog Model
Background & Objective: Bone defects in jaws create major problems for oral and maxillofacial surgery. To overcome the limitations of Autografts tissue engineering uses autogenus cells and synthetic scaffolds. Type of cells or cell sources have an important effect on the construction which is produced. The aim of this study was to evaluate the feasibility and probable limitations of osteoblast...
متن کاملEvaluation of Osteogenic Potential of Cultured Periosteum Derived Cells -Preliminary Animal Study-
Periosteum is a source of osteoprogenitor cells and some investigators advocated the effective use of periosteum as a grafting material for the repair of bone and joint defects. In the present study, we showed bone formation induced from cultured periosteum-derived cells (CPDC) in the rat calvarial defect model. Periosteum taken from a rat tibia was immediately placed in culture medium with 10%...
متن کاملDevelopment of Collagen/Demineralized Bone Powder Scaffolds and Periosteum-Derived Cells for Bone Tissue Engineering Application
The aim of this study was to investigate physical and biological properties of collagen (COL) and demineralized bone powder (DBP) scaffolds for bone tissue engineering. DBP was prepared and divided into three groups, based on various particle sizes: 75-125 µm, 125-250 µm, and 250-500 µm. DBP was homogeneously mixed with type I collagen and three-dimensional scaffolds were constructed, applying ...
متن کاملPeriosteum-derived cells respond to mechanical stretch and activate Wnt and BMP signaling pathways.
The periosteum supplies osteoblasts and nutrients for bone metabolism and is important for osteoblast differentiation and osteogenesis. Recently, periosteum-derived cells have been used for orofacial bone regeneration therapy. However, little is known about the function of the periosteum in physiological bone remodeling. On our hypothesis that the periosteum senses a mechanical stress to induce...
متن کاملSkeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration
Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of dental research
دوره 86 1 شماره
صفحات -
تاریخ انتشار 2007